Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High-β Plasma.
نویسندگان
چکیده
Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear "interruption" of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB_{⊥}/B_{0}≳β^{-1/2} (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehose modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB_{⊥}/B_{0}∼β^{-1/2}. They also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.
منابع مشابه
Simulation of Shear Alfvén Waves in LAPD using the BOUT++ code
The linear and nonlinear physics of shear Alfvén waves are investigated using the 3D Braginskii fluid code BOUT++. The code has been verified against analytical calculations for the dispersion of kinetic and inertial Alfvén waves. Various mechanisms for forcing Alfvén waves in the code are explored, including introducing localized current sources similar to physical antennas used in experiments...
متن کاملSelf-consistent wave-particle interactions in dispersive scale long-period field-line-resonances
[1] Using 1D Vlasov drift-kinetic computer simulations, it is shown that electron trapping in long period standing shear Alfvén waves (SAWs) provides an efficient energy sink for wave energy that is much more effective than Landau damping. It is also suggested that the plasma environment of low altitude auroral-zone geomagnetic field lines is more suited to electron acceleration by inertial or ...
متن کاملElectron trapping in shear Alfvén waves that power the aurora.
Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth's geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfvén waves, preventing immediate wave damping. As waves move to regions with larger v(Te)/v(A), their parallel electric field decreases, and the trapped electrons escape their influence. The ...
متن کاملLaboratory Observations of Shear Alfvén Waves Launched from a Small Source
Shear Alfvén waves with transverse scales of electron skin-depth size are launched with a dual-disk antenna in the Large Plasma Device at UCLA. The waves are studied in the kinetic and inertial regimes. The kinetic shear Alfvén wave is observed for the first time and exhibits predicted radial structure. The perpendicular propagation of the wave is also studied for the first time, and it is foun...
متن کاملLaboratory observation of a nonlinear interaction between shear Alfvén waves.
An experimental investigation of nonlinear interactions between shear Alfvén waves in a laboratory plasma is presented. Two Alfvén waves, generated by a resonant cavity, are observed to beat together, driving a pseudomode at the beat frequency. The pseudomode then scatters the Alfvén waves, generating a series of sidebands. The observed interaction is very strong, with the normalized amplitude ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 119 15 شماره
صفحات -
تاریخ انتشار 2017